(%i1) kill ( all ) ;
done
Figure 1:
Diagram
https://en.wikipedia.org/wiki/Acceleration_(special_relativity)#Curved_world_lines
Bob's t(T) coordinate time (T=Alice's time)
(%i1) t ( T ) : = ( c / g ) · log ( sqrt ( 1 + ( g · T ( t ) / c ) ^ 2 ) + ( g · T ( t ) / c ) ) ;
t ( T ) := c g · log ( 1 + ( g · T ( t ) c ) 2 + g · T ( t ) c )
Bob's x(T) coordinate position (T=Alice's time)
(%i2) x ( T ) : = ( c ^ 2 / g ) · ( sqrt ( 1 + ( g · T ( t ) / c ) ^ 2 ) 1 ) ;
x ( T ) := c 2 g · ( 1 + ( g · T ( t ) c ) 2 1 )
(%i3) dxT : diff ( x ( T ) , T ( t ) , 1 ) ;
g · T ( t ) g 2 · T ( t ) 2 c 2 + 1
(%i4) dtT : diff ( t ( T ) , T ( t ) , 1 ) ;
c · ( g 2 · T ( t ) c 2 · g 2 · T ( t ) 2 c 2 + 1 + g c ) g · ( g 2 · T ( t ) 2 c 2 + 1 + g · T ( t ) c )
Bob's coordinate velocity
(%i5) ratsimp ( dxT / dtT ) ;
g · T ( t )
Is a Geodesic!
(%i6) v ( t ) : = g · T ( t ) ;
v ( t ) := g · T ( t )
g_00 metric term
(%i7) g_00 ( x ) : = ( 1 + g · x ( t ) / c ^ 2 ) ^ 2 ;
g_00 ( x ) := ( 1 + g · x ( t ) c 2 ) 2
For changing the curve "time" parameter. Two possibilities?
(%i8) T1 ( t ) : = ( c / g ) · sinh ( g · t / c ) ;
T1 ( t ) := c g · sinh ( g · t c )
(%i9) T2 ( t ) : = ( c / g ) · tanh ( g · t / c ) ;
T2 ( t ) := c g · tanh ( g · t c )
Red pill or Blue pill? Chose one
(%i10) T ( t ) : = T2 ( t ) ;
T ( t ) := T2 ( t )
(%i11) Γ : integrate ( sqrt ( g_00 ( x ( t ) ) v ( t ) ^ 2 / c ^ 2 ) , t ) ;
t
what???

Created with wxMaxima.